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The numerical solution of the problem of laminar, viscous, incompressible fluid 
flow in the boundary layer on the walls of an axisymmetric channel is considered 
for the presence of swirls in the external stream. The fundamental boundary- 
layer characteristics are obtained for several channels. 

i. 

on the walls of an axisymmetric channel with curvilinear generatrix. 

Formation of the Problem 

Let us consider the laminar motion of a viscous incompressible fluid in the boundary layer 
In this case the bound- 

ary layer equations have the following form [i]: 

Ou Ou w2r ' W2r ' a2u 
u - - + v  - U U ' - - - - + , ~  ~ ,  (1 )  

ax ag r r ag 2 

u Ox : - v  Oy + r = v  ay ~ , (2) 

a(ru___)_) + a(rv )  _ o. (3) 
ax ay 

The boundary conditions are u = v = w = 0 for y = O, and u § U(x), w + W(x) for y * =. 
Here r(x) is the radius of the channel section, the x axis is directed along the channel 
generatrix while y is perpendicular to the channel wall; u and v, velocity components in the 
boundary layer along the x and y axes, respectively; w, circumferential velocity component in 
the boundary layer; U and W, longitudinal and circumferential velocity components in the ex- 
ternal stream; ~, coefficient of kinematic viscosity; and the prime signifies differentiation 
with respect to x. 

Let us introduce the new variable 

f U 
11 = g 2vx 

We shall seek the longitudinal and circumferential velocity components in the boundary 
layer in the form 

u = U  ao(~ ,  x) , w=WcpO1, x). 

There then follows from the incompressiblity equation 

v = - V2-T -O- ,v + - 5 -  on ax " 

Substituting the expressions for u, v, and w into (i) and (2), we obtain 

~ -F I q- 2x  - -  q- x q) q- 2x  1 - -  - -  
an~ �9 --0-- aTI' Y . 

117' r' 2x(l__(p,)=2x(O-~I) ~ O(l) O~ ) 
U ~ r all OvlOx Ox a~l ~ " (4 )  

~ --F l + 2x  + x - -  = 2 x  
0112 r 011 Ox O~l 011 Ox 
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The boundary conditions are 

O0 
- - = O = r  for r l = O ;  
arl 

O0 - - - + 1 ,  q~.-+l for ~1--+oo; 
arl 

0%(~) ~=r  for x = x 0  (5) 
0~i O-q 

2. Determination of the External Stream Characteristics 

The channel shape r(x) and the external stream velocity are considered known when inte- 
grating the system of boundary-layer equations (4). The velocity U(x) is defined as the ve- 
locity on the channel walls when an ideal fluid flows. The circumferential velocity compo- 
nent W(x) is given as the velocity caused by a potential vortex located on the channel axis. 

The channel shape and the velocity U(x) on the walls were computed by using two theoreti- 
cal methods expounded in [2-4]. 

The first method [2, 3] permits the determination of the channel shape and the velocity 
field in the channel by means of a given velocity distribution along the channel axis. The 
second method [4] solves this same problem for a given velocity profile at the channel en- 
trance. 

If the function characterizing the velocitydistribution along the channel axis z is se- 
lected in the first method in the form 

then the stream function ~ and the axial V z and radial V r velocity components can be written 
a s  

exp (-- '--' 
2 ! ~(z, r) = B~'~ ( - - l y '  2nR ~ , 

. = ~  (n!) ~ V ~  

( - - l ) n - '  Rn exp ( - - - ~  - ) 

V,(z, r) = B ~  
,,=, (n!)' V ~  

H2.-3 (z) + 2Rio (z), (6) 

H2.-, (z) + / o  (z), 

exp (--~) H2,,-2(z), 

(7) 

2n- -I  

11. (z. r) = B ~ (-- I)" nR 2 .=, (n!)' V ~  (8) 

w h e r e  H n a r e  H e r m i t e  p o l y n o m i a l s ,  R = r 2 / 4 ,  and  A and  B a r e  c o n s t a n t s .  

I t  f o l l o w s  f r o m  (7)  t h a t  f o r  z -~q :oo  on t h e  c h a n n e l  a x i s  ( r  = 0 ) ,  t h e  a x i a l  v e l o c i t y  com-  
p o n e n t  Vz tends, respectively, to the quantities 

I B. (9) (v~)_. = A---~B ~nd (V,)+. = A + -~ 

The channel shape was determined from the solution of the equation 

(:I 
B~ (- 1)n 2nRn exp ,--  T ,  (10) 

,=~ (nO t i/.~_ ~ H~,,_~ + 2Rfo = ~ = const. 

F o r  c o m p u t a t i o n  i t  i s  c o n v e n i e n t  t o  w r i t e  ( 6 ) - ( 8 )  a s  

Vz----_fo+ "~an, Vr= '~bn, (ii) 
t t ~ l  n ~ l  

R=__ 
2f0 ~- cn' (12) 

n=2 
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where 

RH2n+I 
17ln~. 1 .':= - -  a n ; a, -~- - - - -  

(n + 1) 2 g2~-i 

b,+l = -- b,~ RH2,~ . bt = -- 

n (n 4- 1) H2n-2 

R H 2 . - I  B 
c~+~ = --c~ n (n + 1) H2~-3 

B ' 2 2 ' 

B a' ( _ z , )  
V'2-~ '2exp 

cz = ~ R2z 2/o 

The velocity distribution at the channel entrance in the second method [4] is given in 
the form 

v0 
(V')'=~ = l f i  - - ( r l c )  2 ' 

where Vo is the axial velocity at the entrance section; c = /a2/(a z -- l)a; a, radius of the 
entrance section; and a, ratio between the velocity at the wall and on the axis of the en- 
trance section (a > i). 

Then the dimensionless stream function ~ and the axial and radial velocity components are 
determined by the following formulas: 

, ~  ( - -  1) ~ (2n)t R "+1 sin [(2n + 1) y] 
2BtR + 2At (13) Z~ 2 n + !  

.=o nt ( n +  1)! (I + ~ )  2 

where V z = Vz/Vo; V r 
stants. 

Let us rewrite (13)-(15) 

V_=. B ,+  At 2 ( -  1)" (2n)! RnsinI(2n2.+~ + 1) Y] , (14) 

.=o (n!p 0 + z  2) 2 

~ ,  (-- 1p (2n + 1)!/~+'/2 sin [(2n + 2) Yl 
V, .4, (15 ) 

.=o ~ n! ( n +  1)! (1 + ~)"+' ' 

= Vr/Vo ; ~ = ~/Voc 2", z = z / c ;  r = r / c ;  y = a rc  t a n  l / z ;  Ax and Bx a r e  con-  

in a convenient form for computation: 

VF ~ c., 
R = "  2B1 n=0 

(16) 

where 
n = 0  ~ 0  

2(2n -4- 1) R sinR2n -4- 3) yl 
C n - H  ~ - -  C n  

(n + 2) sin I(2n + 1)yl (1 +zD 

At sin y . 
c o = - ~ [  R 0+z-~,j2 , 

2 (2n+ 1) R sin [(2n+3) Yl 
; ao=At  

(n + 1)(1 -t-z ~) sin|(2n q- 1)y] 

bn+i = - -  b,, 2 (2n -t- 3) R sin [(2n 4- 4) Yl 
(n + 2) (1 + zD sin [(2n + 2) Yl 

bo = A~R ~/2 sin 2y 
l + z  2 

(17) 

a n +  l --~- - -  a n  

sin y 
(1 + ~)~/2 , 

tinued untilthe ratio (R i+~ -- Ri)/R(z) exceeded 10 -5 (i is the number of the 
velocities Vz(z) and Vr(z) on the channel walls were determined by using (ll) 

The channel shape is determined from (16) in this method, where ~ is assumed constant. 

Equations (12) and (16) were solved by successive approximations. The iterations were con- 
iteration). The 
or (17) by means 
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c ,  VRe,, 
~ r  ~_~. ~/-#~ ' 

x _ _ _ . . . . ~ = ~ - ' "  
<z . . . . . . . . . . . . . . . . . . .  o,8 - - ' ~ -  

Z 

2 " 

t 

o (8 a,z o,# z o qz ~, z 

�9 Fig. i Fig. 2 

Fig. i. Channel shape (I) and change in longitudinal velocity in 
the external stream along the channel axis (2): solid lines are 
for the contractor KI and the diffusor DI, while the dashed line 
is for contractor K2 and the dash--dot lines are for D2. 

Fig. 2. Curves of the change in the friction coefficient cf~ R/~e 
(I) and the dimensionless provisional boundary-layer thickness 
(611/x) Rf~e (2) along the diffusor D2 axis for F = O (solid lines); 
F = 0.22 (dashes); F = 0.32 (dash--dot lines). 

of the functions R(z) found. Terms on the order of >10 -4 were retained in all the computa- 
tional formulas, 

One diffusor (DI) and two contractors (KI and K2) were constructed by using the first 
method, and one diffusor (D2) by using the second. The following values were taken for the 
constants:i A = 0.55 and B = 0.9 in the computation of the contractor K1 and the diffusor DI; 
A = 0.15, B = 0.I for the contractor K2; and AI = 0.3 and B~ = 0.7 for the diffusor D2. It 
follows from (9) that a tenfold increase in the velocity occurs in the contractor K1 and a 
twofold increase in the contractor K2. In all cases ~ = 0.06. 

The circumferential and longitudinal velocity components in the external stream were 
determined by the following formulas: 

w =  u =  + 
where F is a given constant defining the swirl in the external stream. 

The shape of the computed channels and the dependence of the external stream velocity U 
on the coordinate z are represented in Fig. i. 

3. Integration of the Boundary-Layer Equation 

System (4) was integrated by a numerical method for the above-mentioned channels for 
different values of the quantities F. 

Let us note that (4) goes over into two Blasius equations ( ~= ~@/~q) for x = O. Keeping 
this in mind and taking into account that all the computed channels are channels with two 
asymptotes, we take as initial condition for the system (4): for x = 0 ~/3~ = 3~o/3~, where 
@o is the solution of the Blasius equation. 

The range of integration in n was bounded by the quanti~y n~ = 7.5, and the second of the 
boundary conditions (5) was replaced by the following: 

o~/0~=1, ~= 1  ~r ~=7.5. 
As computations showed, the longitudinal and circumferential velocity profiles approach 

sufficiently close to 1 for q < 7.5. 

The order of the first equation in system (4) was reduced for the integration by means 

of the substitution 

The derivatives with respect to x in (4) were replaced by difference analogs by a two-point 
scheme. Consequently, a system of two nonlinear second-order differential equations was ob- 
tained which was integrated at each x spacing by using the method of factorization with itera- 
tions. This system had the following form in x at the i-th layer in the n-th approximation: 
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OTI-.--- ~ ~ L,O,,_, + 2x h - -  

on'~ + v,,~ ( r L t f f J n -  1 -q- 2 x  

where t he  fo l lowing  n o t a t i o n  was i n t r o d u c e d :  

~I f ' U ' 
�9 = (o~I~I; L t = 2 x - - + 1 + x - -  ; 

.o r U 

oxo._t (L2+ ~ - ) + L ~ - - L 3 ( l - - ~ 2 n _ l ) q - 2 x  ~ . - l ~ - t  :---0, 
h ( 1 8 )  

2x ._~.-1 + 2x ~ . - l ~ - ,  ~ O, 
h h 

U '  1~ 7s r '  
/a --- 2x ; L3 = 2x 

U U 2 r 

h is the spacing in the variable x. 

The spacing in the variable n was 0.05 and in the variable x was 0.01. 

The characteristic boundary-layer quantities were calculated by means of the longitudi- 
nal and circumferential velocity profiles determined as a result of integration of system 
(18) : 

the friction coefficient in the longitudinal direction 

ctt = 9/7"/2 ' 

t he  f r i c t i o n  c o e f f i c i e n t  in  the  c i r c u m f e r e n t i a l  d i r e c t i o n  
Ow 

clz = pU~Z/2 ' 

the  p r o v i s i o n a l  b o u n d a r y - l a y e r  t h i c k n e s s e s  

g U,~ 

6 ~ . =  ~!_~__u~ ( 1 - -  uU~ ) d y ( n =  l' 2; m~- l' 2); 

where the  s u b s c r i p t  1 cor responds  to the l o n g i t u d i n a l ,  and the s u b s c r i p t  2 to the  c i r c u m f e r -  
e n t i a l  v e l o c i t y .  

These characteristics were computed by means of the following formulas: 

- ~  C I2 ~ , 
'N=O ~=0 

T 1 - - -  dn, 
�9 OR 

x g o n  

t n  

X, 0 

x OT I x o 

where Re = xU/~. 

Certain results of computing the fundamental boundary-layer characteristics are repre- 
sented in Figs. 2-4. 

Curves of the dependences of the friction coefficients in the lon~tudinal direction 
cfl R~and one of the provisional boundary-layer thicknesses (61~/x){Re on z are constructed 
for the diffusor D2 in Fig. 2. The dependences mentioned are represented for three values 
of the quantity F characterizing the stream swirl r = 0, 0.22, 0.32. It is seen from the 
figure that the separation in the diffusor is shifted upstream as the swirl increases. 
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Fig. 3. Curves of the change in the friction coefficient 
cf R~ee (I) and the dimensionless provisional boundary-layer 
thickness (61Jx) ~fR-e(2) along the contractor KI axis for 
ri= 0 (solid lines); F = 0.248 (dashes); F = 0.372 (dash--dot 
lines). 

Fig. 4. Curves of the change in the friction coefficient 
cfl R~ee (i) and the dimensionless provisional boundary-layer 
thickness (61~/x) R~---e (2) along the contractor K2 axis for 
P = 0 (solid lines); 2 = 0.248 (dashes); F = 0.372 (dash-dot). 

Analogous curves are placed in Figs. 3 and 4, respectivel~ for F = 0, 0.248, and 0.372 
for the contractors K1 and K2. The friction hoefficient cf~r has a maximum at the inflec- 
tion point of the functions r(z) and U(z) which govern the channel shape and the longitudinal 
velocity distribution in the external stream (Fig. i) in both contractors in the absence of 
a swirl. As a swirl increases, the friction coefficient increases, and the maximum is shift- 
ed upstream. The~uantity (~1~/x) R/~ehas a minimum at these same points. As the swirl in- 
creases, (~i/x) JRPRe diminishes and the quantity 61~ becomes negative for sufficiently large 
values. This is explained by the fact that as the swirl increases in contractors, longitudi- 
nal velocities exceeding the external stream velocity appear in the boundary layer. 

NOTATION 

x, axis along the channel generatrix; y, axis perpendicular to the channel wall; u and v, 
velocity components along the x and y axes inthe boundary layer; w, circumferential velocity 
component in the boundary layer; U and W, longitudinal and circumferential velocity compo- 
nents in the external stream; ~, coefficient of kinematic viscosity; r, radius of the channel 
section; z, axis along the channel axis; fo(z), function characterizing the velocity along 
the channel axis; ~, streamfunction; Vz and Vr, axial and radial velocity components in the 
channel; Hn, Hermite polynomials; A, B, A~, BI,F~ given constants; Vo, axial velocity in the 
channel entrance section; a, entrance section radius; cfl and cf=, friction coefficients; 
611, 6i2, ~2~, 6~, 62, provisional boundary, layer thicknesses; Re, Reynolds number; ~, dynam- 
ic viscosity coefficient. 
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